
LABORATORY FOR MASSACHUSETTS
INSTITUTE OFCOMPUTER SCIENCE TECHNOLOGY

Co MIT/LCSffM-391

* N

POLYNOMIAL END-TO-END
COMMUNICATION

Baruch Awerbuch
Yishay Mansour

Nir Shavit

DTICS ELECTE
OCT 3 01989e

August 1989

545 TECHNOLOGY SQUARE, CAMBRIDGE. MASSACHUSETTS 02139

89 2100

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTIONIAVAILABIUTY OF REPORT
Approved for public release; distribution

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TM-391 N00014-85-K-0168 and N00014-83-K-0125

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
MIT Laboratory for Computer (If applicable) Office of Naval Research/Department of Navy

Science

6c. ADDRESS (ty, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
545 Technology Square Information Systems Program
Cambridge, MA 02139 Arlington, VA 22217

8a. NAME OF FUNDING/ SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

DARPA/DOD
Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

1400 Wilson Boulevard PROGRAM PROJECT I TASK WORK UNIT
Arlington, VA 22217 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)
Polynomial End-To-End Communication

12. PERSONAL AUTHOR(S)
Awerbuch, B., Mansour, T., and Shavit, N.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Technical FROM TO 1989 August 23

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP _ Communication networks, unbounded counters, fault-toler-

/ ance b end -end

19. A TRACT (Continue on reverse if necessary and identify by block nuinber)
A dynamic communication network is one in which links may repeatedly fail and recover.

In such a network, though 4t is impossible to establish a path of unfailed links, reliable

communication is possible, if there is no cut of permanently failed links between a sender

and receiver.
We consider the basic task of end-to-end communication, that is, delivery in finite

time, of data items generated on-line at the sender, to the receiver, in order and without

duplication, or omission.
The best known previous solutions to this problem had exponential complexity. Morever,

it has been conjectured in (AG88) that a polynomial solution is impossible.
This paper disproves this conjecture, presenting the first polynomial end-to-end proto-

col. The protocol uses techniqes adopted from shared memory algorithms, and introduces

novel techniques for fast load balancing in communication networks. I

20. DISTRIBUTIONIAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
13 UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. - DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Judy Little, Publications Coordinator (617) 253-5894

DO FORM 1473, 84 MAR 83 APR dton may be used until exhausted SECURITv CLASSIFICATION OF THIS PAGE
All other editions are obsolete

e ~ 104 o.vi M,.ow~ US-W4a
Unclassified

I .m mm r iimn m m -

Polynomial End-To-End Communication'

Baruch Awerbuch t Yishay Mansour $ Nir Shavit §

August 29, 1989

Abstract

A dynamic communication network is one in which links may repeatedly fail and recover. In such
a network, though it is impossible to establish a path of unfailed links, reliable communication is
possible, if there is no cut of permanently failed links between a sender and receiver.

We consider the basic task of of end-to-end communication, that is, delivery in finite time, of data
items generated on-line at the sender, to the receiver, in order and without duplication or omission.

The best known previous solutions to this problem had exponential complexity. Moreover, it was
conjectured in [AG881 that a polynomial solution is impossible.

This paper disproves this conjecture, presenting the first polynomial end-to-end protocol. The
protocol uses methods adopted from shared memory algorithms, and introduces novel techniques for
fast load balancing in communication networks.

Accession For
I TIS GRA&I

DTIC TAB
Urianounced
Just float io-

Distribution/
Availability Codes

,Avail fldi'O1

Dis Speial

'A preliminary version of the results presented in this paper appeared in [AMS89].
tDept. of Mathematics and Lab. for Computer Science, M.I.T., Cambridge, MA 02139; ARPANET:

baruchOtheory.lcs.mit.edu Supported by Air Force Contract TNDGAFOSR-86-0078, ARO contract DAAL03-86-K-0171,
NSF contract CCR8611442, and a special grant from IBM.

tLaboratory for Computer science, MIT, 545 Tech. sq., Cambridge, MA 02139. partially supported by NSF 86572i-CCR,
ARO DALL03-86-K-017 and ISEF fellowship.

$Hebrew University, Givat-Ram, Jerusalem 91904; Supported by Israeli Communications Ministry Award. Currently
visiting the TDS group at MIT, supported by NSF contract no CCR-8611442, by ONR contract no N0014-85-K-0168, by
DARPA contract no N00014-83-K-0125, and a special grant from IBM.

Keywords: Dynamic Networks, Load Balancing, Time Stamping, Amortized Analysis.

1 Introduction

A basic task in any network is that of end-to-end communication, that is, delivery in finite time, of data
items generated at a designated sender processor, to a designated receiver processor, without duplication,
omission or re-ordering of the data items. The data items could represent transactions of a stock exchange,
speech or video signals, military commands, etc. In almost all cases, data items are generated on-line
and are not available at the beginning of the protocol's execution.

In a reliable network, where communication links never fail, this task is performed easily by estab-
lishing a fixed communication path between the sender and the receiver, and sending all data items along
this path. Unfortunately, existing communication networks, e.g. the ARPANET [MRR80], DECNET
[Wec8O], have a dynamic topology in the sense that links may repeatedly fail and recover, making it
impossible to relay on the use of any single communication path.

The "classical" approach to handle the problem is to construct a new communication path every
time the previous path fails, taking care to purge any messages in transit on the old path. However,
this approach is very limited, since its implementations (as in [Fin79, Ga176, AAG87, AS88, AAM89,
AGH89]) require strong assumptions regarding the allowable patterns of link failures in the network. In
[AAG87, AS88, AAM891 for example, the assumption is that the whole network stabilizes for a period of
time long enough to allow construction of a path and communication over it. The weakest assumption
among those above, presented in the broadcast protocol of [AGH891, still requires that all the edges on
some path between the sender and receiver be3 operational for the entire time period required to construct
that path and communicate the data over it.

This assumption is overly optimistic, since for example, if every edge has a constant probability of
being operational (or not operational) at a given time, then the probability of the whole path being
operational at a given time is exponentially small in the length of the path.

However, one can see that the existence of an operational communication path is not a necessary
condition for communicating between two nodes (processors). In fact, as stated in [AE86], the necessary
condition is merely that there is "eventual connectivity" between the sender and receiver, in the sense
that there is no permanent cut (see [Vis83]) of failed edges between them. More precisely, there exists
no partition of the network into two sets, one containing the sender and the other the receiver, such that
from some time and oi, no operating edge connects a node in one set to a node the other set.

Early works [Vis83, AE83, AE86] solving the end-to-end problem under the minimal conditions alone,
were based on the use "unbounded sequence numbers", implying that both the message size and amount
of memory needed, grow with number of data items transmitted. In other words, the complexity of the
protocols was unbounded in terms of the true input to the problem, namely, the size of the network.

The elegant and surprising work of Afek and ,:. [AG88] presented the first "bounded complexity"
end-to-end protocol. Unfortunately, this solution :-.-ed exponential message complexity (because the
number of times a given data item is sent over a ne , _,rk link is exponential). Moreover, it was believed
by many researchers, and conjectured in [AG88], that Po polynomial solution exists, leaving little hope
for a reasonable solution to the end-to-end problem.

In this paper, we disprove this conjecture, presenting an end-to-end protocol that is polynomial in both
messages and space. The protocol is based on a new technique for sequence numbering, that combines
the sequential time-stamp schemes used in shared memory algorithms ([Lam86, 1L87, DS89]), with a
novel and highly fault tolerant load balancing method allowing to preserve global properties based on
local information only (as in Goldberg.Tarjan [GT88] at i Ahuja-Orhn [AO87]).

1

2 Problem Statement

2.1 The network model

Consider a communication network in the form of an undirected graph G(V, E), where the nodes are the
processors and the edges are the links of communication. Each undirected link consists of two directed
links, delivering messages in the opposite directions. Below we describe the properties of a directed link.

Each iink has a finite capacity, in the sense that only constant number of messages is allowed to
be in transit on a given link at a given time (I.e. we consider only protocols that obey this property.)
The communication over links obeys the FIFO rule, that the sequence of messages received over the
link is a prefix of the sequence of messages sent over the link. Also, the communication is completely
asynchronous, namely, there is no a priori bound on link delays.

A link is non-viable if starting from some message, and on, it will not deliver any further messages
to the other end-point; for those messages the delay is considered to be infinite (xc). The sequence of
messages received is in this case a proper prefix of the sequence of messages sent. Otherwise, the link is
viable. An undirected link is viablc if both of the directed links that it consists of are viable.

We say that the sender is eventually connected to the receiver if there exists a (simple) path from the
sender to the receiver, consisting entirely of viable links. Clearly, if non-viable links create a cut of the
network, disconnecting the sender from the receiver, then, eventually, the sender will not be capable of
delivering messages to the receiver.

2.2 The end-to-end problem

The purpose of the end-to-end protocol is to establish a (directed) "virtual link" to be used for delivery
of data. items from the sender to the receiver. It is required that this virtual link be viable if and only
if the sender is eventually connected to receiver. This virtual link should have the same properties as a
"regular" network link, namely:

Safety: The sequence of data items output by the receiver is a prefix of the sequence of data items input
by the sender.

Liveness: If the sender is eventually connected to the receiver, then each data item input by the sender
is eventually output by the receiver.

2.3 The complexity measures

We consider the following complexity measures.

Communication: The number of bits transferred in the network, per data item delivered. That is, this
the total number of bits sent in the period of time between two successive data item deliveries at
the receiver.

Space: The maximal amount of space required by a node's program throughout the protocol.

Time: The maximal length of a time interval between two successive data item deliveries at the receiver,
under the assumption that delays of viable links are upper-bounded by 1 time unit.

Computation time: The maximal number of local computation steps a node performs in the interval
of time hetween two successive data item deliveries, provided that this data item is not the last
data item.

2

Definition 2.1 A protocol is bounded if its communication, space, time, and computation time complexities
are independent of the number of data items, depending only on the size of the netw'ork.

Definition 2.2 A protocol is polynomial if its communication, space, time and computation time complex-
ities are upper-bounded by polynomials of the size of the network.

We would like to stress the fact that being able to send (receive) an infinite number of messages
does not require either sender (receiver) to have infinite space. A silLgle buffer at the sender (receiver)
suffices in order to store next data item to be transmitted. The precise formulation of this "interactive"
statement of the problem can be found in [LMF88].

2.4 Relations to other models

The model described above is called the "o-delay model" in [AG88], and the "fail-stop model" in [AM88].
As mentioned in the introduction, our motivation here is to deal with networks frequently changing
topology. In such dynamic networks, links may fail and recover many times (yet processors never fail).
Each failure or recovery of network link is eventually reported at both end-points by some underlying link
protocol. As pointed out by Afek and Gafni [AG88], this dynamic model is easily reducible to the model
described above. The simulation of the dynamic model by the fail-stop model is as follows. A message to
be forwarded on a link is stored in a buffer, until the link recovers and all the previously sent messages
have been delivered. A protocol similar to the data-link initialization protocol of Baratz and Segall [BS88]
is used to guarantee that no messages are lost or duplicated. Each link in the dynamic network that does
(does not) fail forever is represented by a viable (non-viable) link in the fail-stop model. Any two nodes
eventually connected in the dynamic network are eventually connected in the fail-stop network.

3 Informal Description

In this section an informal outline of the protocol and the main ideas leading to it are presented. The
presentation begins with a description of a very simple end-to-end protocol using unbounded sequence
numbers, i.e, messages of unbounded size. This algorithm is then refined through a series of steps, to
derive a bounded protocol having polynomial complexity.

The simple unbounded protocol involves two types of messages. The "data" message contains some
data item which is to be delivered to the receiver; the "acknowledgment" (in short, "ack") message serves
to acknowledge the receipt of the data item at the receiver. Both the data and the ack messages carry
the (unbounded) sequence number of the data item in question; the data message also carries the data
item itself.

The protocol works as follows. Once the sender inputs the data item of sequence number t, it sends the
data message (indexed with 1) to all its neighbors. Every node, upon receiving this message, forwards it
to all its neighbors, unless it already received a data message with higher sequence number. The receiver,
upon receiving the data message of sequence number 1, sends back an ack message with sequence number
1. The sender will input the next data item (with sequence number £ + 1) only after it received the ack
for the data item t. Note that the protocol creates a situation where many messages may be in transit
on the same link at the same time.

The first very simple modification is intended to guarantee that at a given time, there is at most one
message in transit in a given direction on a link. This is achieved by letting every process send the ack
of t on every edge the data message with t was received. A process does not send a future data message
on an edge, before it receives the ack for the last data message sent on that edge. Though this only
means that messages are stored in the process rather than on the channel, the number of messages stored

3

per edge can be reduced to one, by noticing that it suffices to maintain only the message with highest
sequence number. Observe however, that the complexity is still unbounded, since the size of the sequence
numbers I is not bounded.

At this point, the following important observation is naiide. Although the protocol uses an unbounded
number of different label values, at each point in time, the number of different label values in the system is
linear in the number of edges. Let it first be shown how, assuming that the sender has a label oracle telling
it whether a given t value exists in the system, a polynomial end-to-end protocol using only bounded size
labels can be designed (this protocol is called the main protocol). The label oracle enables the sender to
compute the set of values that exist in the system, denoted by 1.

The idea is that the sender, in order to send a new data item, generates a label that is "greater" than
all the labels in I. A well known mechanism that achieves this goal is a bounded sequential time stamp
system (see [1L87, DS87].) The time stamp system to be used will be of size N, where N is polynomial
in n, and each label has size of O(N) bits. Such a system guarantees that for any set of values 1, that
has less than N values, a label that is not in 1 and is "greater" than any value that is in 1 can be found.
Note that the system also defines the operation "greater" associated with the labels. Using such a time
stamp system and the oracle, the sender can always find a new label, that is greater than all the labels
in the system, and is of size polynomial in n.

Most of the effort in the protocol is implementing a mechanism similar to the above label oracle. One
would like a node to "know" locally that it is clean of a given label I, that is, all references to it can be
eliminated. To achieve this two modifications are introduced. First, the sending of replies to a message
with label t is restricted to edges that were traversed by the message t. This implies that a node can
receive a reply to message I only on edges on which message t has been sent. Second, a node does not
send a new data message on an edge until it receives a reply to the previous message sent along it.

Assume that node v receives a message with label t and forwards it. assume also taht after some time
it received a reply for I on all the links on which it forwarded the message, and also received a message
labeled later than t. At this point none of the local variables in v need contain reference to label t. Thus,
node v creates a token that includes its name v, the label I and the list of edges that the message t was
sent on. The token is an indication that node v is clear of references to label t.

The remaining unresolved problem is that of getting all the tokens with label t to the sender, so it
can deduce that t is not in the system, since all nodes were clean when the tokens were created, and all
tokens are in the sender. If the sender collects the tokens from some of the nodes, but not all of them,
it can check locally if it has all the tokens created for a given t in the following way. Using the lists of
edges (listing on which edges message t was sent) in the tokens of label I, the sender can create a set S
of nodes that certainly received the message 1. If from every node in 5, the sender has received a token,
then there is no node in S that sent message I to a node not in S. Since the sender is in S, nodes not in
S never received message t.

The problem in getting all the tokens to the sender, is that on one hand, some of the edges that the
tokens are sent on may fail. This problem may be solved by duplicating tokens and sending them on
different paths. However, duplicating tokens disables the sender from checking locally if it has all the
tokens of t that were created.

Assume one could bound the token capacity of the network so that each process apart from the sender
(whose capacity is unbounded) could contain at most some fixed number of tokens. After the network's
tc,ken capacity is reached, the creation of a new token in any process would imply that some token was
received by the sender. By simple pigeon hole arguments it can be shown that after a bounded number
of such token creations, there would be a message I for which all the tokens were received by the sender.

The solution to the token collection problem is thus a fault tolerant load balancing protocol to assure
that tokens are evenly distributed among processes in the system, maintaining the property that every
process apart from the sender has bounded capacity. The protocol assures that no matter which com-

4

munication path becomes eventually connected, there are sufficiently many tokens on this path, and one
will eventually be forwarded to the sender.

The basic idea behind the load balancing protocol is the following. Each node has some quantity
of tokens. Assume for a moment that the network is synchronous and static. Consider the following
protocol. At every even clock tick a node sends a token to each neighbor if it had A or less tokens than
it, and sends nothing otherwise. At every odd clock tick, each node updates its neighbors about the
number of tokens it has. After a polynomial number of iterations the protocol will, given that A = 0(n),
converge to a steady state (i.e. no tokens are sent). The surprising fact is that a very similar protocol
will converge, and with polynomial communication, in an asynchronous network where links may fail.

In the protocol, the number of tokens stored in a node is bounded by a polynomial in n. In order
to enforce this bound, a node that has more than a certain amount of tokens is blocked, and does not
respond to messages of the main protocol. This guarantees that a node will not generate additional
tokens locally. Furthermore, it can be proven that this rule does not cause deadlock. The bound on the
number of tokens in each node implies that the number of tokens that can be in the network at any point
in time is polynomial in n (which is less than N). Any label that is sent, for which not all the tokens
have been collected, is assumed to exist in the system. The value of N will be chosen to be more than
the "label capacity" of the network, and thus the sender will always be able to generate a new label.

The formal proof of the load balancing protocol uses amortized analysis to show that though it could
be that some given token cycles forever in the network, the total number of tokens sent in the period of
time between two successive message receipts at the receiver, is bounded by a polynomial in n. In the rest
of this section we sketch an intuitive argument for the complexity of the load balancing protocol. Note
that every token that is sent creates at most 2n updates, therefore , to bound the complexity, it suffices
to bound the number of token messages sent. As long as no new token is created, and no token is received
by the sender, the number of all the tokens in the network remains unchanged. As mentioned before, the
aim of the protocol is to distribute the tokens evenly between the nodes. Consider an energy function E
that is the square of number of tokens in each node at a given time. Clearly, this function achieves its
minimum, when the tokens are evenly distributed, that is, when there is not enough energy for a token to
be sent, because no two processes have a token difference of A. In a static and synchronous system, each
token sent from a process to one with A less tokens, reduces 6 by at least n, for A > 2n. Unfortunately
in our case, due to the asynchrony, updates might be delayed, and based on outdated information, there
may be "bad" tokens whose receipt will increase C since they were mistakenly sent to processes having
more tokens. However, in order for such a "bad" token send to occur, updates of many tokens must be
delayed. The property that can be shown, and is rrucial to the complexity analysis, is that in order to
create the many delayed updates necessary for one "bad" token to be sent, many "good" token sends
must occur, and so it cannot be that "bad" tokens are continuously providing the energy for more "bad"
tokens to be sent.

4 The Main Protocol

4.1 Preliminaries

In the following subsections, the code of the main protocol meeting the desired end-to-end properties is
described.

In the presentation of the code, we use the language of guarded commands of Dijkstra (DF881, where
a process code of the form G1 --- A 10G2 -- A 2 0 ... Gk - Ak is repeatedly executed. In each
execution, of all the guards G that are true, an arbitrary i is selected and Ai is performed. A guard
G is a conjunction of predicates. The "receive M on e" guard is true if message M is available in
the "incoming messages" buffer of channel e. The execution of the corresponding statement includes the

5

receipt of the message, and the deletion of the message from the buffer.
To simplify the description of the properties and proofs, global time is assumed. The execution of

each guarded command in the code of a process is thus termed an event, and is assumed to be atomic.
The state of the system at any time consists of the local process states S,,v E V, and channel states
C',e E E, as they were following the latest event in every process. The subscripts and superscripts,
added to variables (vart), denote the local process state.

4.2 Properties of the main protocol

Let the input sequence I = (DO, Di,...) be an infinite sequence of data items to be input, one after
the other, to the sender. Similarly, let 0' = (Do, Dl, ...) be the sequence of data items output by the
receiver in all output events preceding some state St. Then the following properties must be met by an
End-to-End communication protocol.

P1 Safety In any state S t , the output sequence Ot is a prefix of I.

P2 Liveness For each data element Dk in I, there is a state St in which it is added to Ot .

One can easily see that P1-2 are equivalent to the definition in Section 2.2.

4.3 Creating a Virtual Network

In presenting the protocols below, it is assumed that both sender and receiver have a single link that
is always viable, connecting them to the rest of the network. This assumption is made with no loss of
generality, since one can effectively "split" the sender (or the receiver) node into two virtual parts, a
"special" sender node responsible for the input (output) interface, and an "ordinary" node, responsible
for the interface with the rest of the network nodes. Thus, all the network nodes can be partitioned in 3
categories: sender, receiver, and the "ordinary" nodes, where the sender and receiver are each connected
to one "ordinary" node. While all the ordinary nodes perform the same protocol, special protocols are
designed for the sender and the receiver.

In the main protocol presented below, both sender and receiver are split into special and normal nodes.
In the label protocol presented in the sequel, only the sender is split.

4.4 A sequential time-stamp system

The algorithm used to generate the labels added to the data items transmitted by the main protocol, is
a sequential time stamp system algorithm.

A sequential time stamp system consists of a set of labels I {I I I E L}, III _ N for some constart
N, and a labeling function £ (1). The label values in the range L are ordered by the irreflexive and
antisymmetric relation -<, described in terms of a precedence graph G = (L, -<). ff the cardinality of L is
bounded, the time stamp system is said to be bounded, i.e. labels are of a bounded size. The labeling
function C . LN- l 4 L, given a set of N - 1 labels totally ordered by -<, returns a new label t, greater
by the order -< than all N - 1 others. A more elaborate description of the properties, upper and lower
bounds of sequential time-stamp system constructions, due to Israeli and Li, can be found in [1L87].

The sequential time-stamp system to be used in our construction is a variant due to [DS87], of a
construction by Lamport [Lam86]. Let the range L of labels (nodes) in the precedence graph G be of size
ILl = N . 2 N . The label value I of each node is thus a boolean vector of size N + log N. Let logN bits
of the vector t be a "cluster number" (denoted C(e)), C() = t[(N- 1)... (N- l+log N)] E {0..N- 1}.

6

Procedure f (-);
t[(N-1)..(N-I+logN)j := (i : V' E t, C(t') 0 i);
for all I' E 1 do

if C(t) > C(') then t[O(t)] := £'[C(t)] fi;
if C(f) < C(') then [C(')]= not ('[C(t)] fi;

od;
return t;

end C;

Figure 1: The labeling function

receive REPLY (t)
trying:= false;

0

free-label-available(-); trying:= false;
Input value;

!:= lu {t};
send ISG (t, value)
trying := true

Figure 2: Code of the main protocol: sender

Let the remaining N bits 1[i], i E {O..N - 1}, identify a node in the cluster. The following is thus the
definition of the relation -<, where I' -< t if there is a directed edge from the node of t to that of I' in G.

true if (C(t') < C(t)) A (t[c(t')] = e'[C()])
t' - t = or (C(t') > C(t)) A (e[C(t')] # 1'[C(1)])

false otherwise.

That is, labels of nodes in the same cluster are unrelated, and nodes in different clusters are always
related. Figure 1 is the definition of the labeling function 4.

Note that for the sake of simplicity, the bit t[C(t)] exists in every label t, though it is never set
(all nodes with either setting of this bit are equally usable). Proof that the above construction has the
properties of a sequential time-stamp system, can be found in [DS87].

The sequential time stamp system used in the protocol has a label set of size N = 1 + (A + 5)n 2.
The predicate function freelabeLavailable[t], that indicates whether there is a free label value that can
be used, is III < N.

4.5 Sender's protocol

The code of the protocol is presented in Figure 2.
The labeling protocol maintains the set 1 of labels which are believed to be existing in the system.

The boolean function free-labeLavailable (1) returns value true only if the labeling function £ can be
applied to return a new label. The sender also maintains boolean variable trying, which is true if the

7

receive NSG (t, value) on e
output value;
send REPLY (t) on e;

Figure 3: Code of the main protocol: receiver

sender is in the process of delivering next message to the receiver, and a variablk value, which is the

value (contents) of the current data item to be delivered.

The sender reads the input into its variable value when both trying = false (current data item has
been delivered) and free-labeLavailable (t) = true. At that time the sender computes a new label as t

£ (t). It then transmits the information message SG (t, value) over its (only) outgoing link.

4.6 Receiver's protocol

The receiver's protocol is given in Figure 3.
For every MSG (, value) received, receiver outputs the contents value of the message and sends back

REPLY (1).

4.7 Ordinary node's protocol

The code itself is given in Figure 4.

The operations of this protocol are performed only while a node is not "blocked" by the label protocol,
a condition that is determined based on the variable blocked. For that purpose, the node maintains

boolean. variable blocked, which is true if the node is blocked. In the sequel, we describe operations

performed at the node while it is not blocked.
An important property of the protocol is that when the sender sends a message MSG(I, value), in every

node in the network the variables that depend on the value t are at their initial value, in other words,
there is no already existing reference to this label in the system.

The node maintains variables latest]t - the label of the latest message received, and latest-value

- the value of the data item sent in of the latest message. Also, it maintains a number of arrays, each
indexed by label values. We use arrays with entries t in the code, for the sake of simplicity only. To
achieve polynomial space, the actual implementation of these arrays would be in the form of a space

efficient data structure such as a linked list.
The variable recmsg[l] (rec.xeply[t]) is a boolean array, whose ftI entry is true if MSG(t, value)

(REPLY(f)) has been was received, but whose token with label t has not been generated yet. The following
arrays, edges_ ent.mg, edges.rc.msg, edges.sant -reply, and edges-rec..reply, are indexed by t.

Each entry is a set of edges on which a MSG(1, value) or a REPLY(I) message has been sent or received.
Also, for each edge e, we define a variable status [el, receiving values clean or dirty. If status (e] = dirty

then there exits t, such that e E edges .entmsg[l], but, at the same time, e f edges. rec..reply[t].
There is a simple update rule for the variable status. Once a message is sent on e, the sending node

sets status [e] := dirty. Upon receiving a REPLY, status [e] := clean is performed.
When a node receives HSG (, value) on edge e, it acts as follows. It adds e to edges.xec.msg [It,

and then checks whether latestl -.< . If so, then the message is a new one; in this case it updates

the variables associated with the latest message, setting latest.t := 1, latest-.value := value, and

recmsg[t] := true.

8

-' blockAd; receive MSG (1,value) on e -.
edgus..rec.msg [11 := edges.recmsg M U {e };
if latesti -< I then

latesti := 1;
latest-value := value;
rec.sg[f := true;
for all e if t' -< t A rec.msg[I'] then rec-reply[']: true fi

-'blocked ; -'rec.reply [] ; rec..msg [] status [e] = clean; e edges-sentmsg [latestll
send MSG (latest.t,latestvalue) on e;
status [e] := dirty;
edges.sent-msg [latest] := edges.sent.msg [l.testJ] U {e};

0
- blocked; receive REPLY (t) on e

status [e] := clean;
edges.rec-reply [1] := edges-xec-reply [f] U {e};
for ali ', if f' -< f A recmsg[I] then rec.xeply[l'] := true fi; /*this includes t itself */

-blocked ; rec.reply [I ; e E edgesrec.usf. [1] ; e edges.sent.xeply [1]
send REPLY (1) on e;
edges.sent..reply [I] :- edges .sent..reply [1] U {e};

-blocked; edges.sent.msg [I] = edges..rec..reply [] # 0; 1 -< latestl-
call Procedure NEWTOKEN (v, I, edges.sent.msg [I)); /*triggers the label protocol;*/
edges-.ent.msg [:] 0; edges..sent..rep.y [I] := 0; rec.xeply[f] := false;
edges-rec.msg [1] 0; edges-rec-reply (] 0; rec.asg[l] := false;

Figure 4: Code of the main protocol

The receipt of a message MSG(I, value) implies the receiving can send a REPLY for all labels I' -< 1,
since a reply to all smaller messages must have already been receivid by the sender. To this end, the node
sets rec.xeply[I'] := true for all P, -< 1, for which rec.msg[1'] = true, i.e. a message has been received.

The latest message is then forwarded on each edge e at most once, if the edge status is clean, and
no REPLY has been received fo that message. It is clear why a message is forwarded only once, and the
remson for not forwarding after a REPLY message was received is simply because the receiver has already
received this message.

Whenever REPLY (1) is received on e, the node sets status [e] := clean, adds e to edges-rec-reply [1],
and sets rec..reply[l'] := true for all ' -.< t, for which recmsg[I'] = true. Note that a message
MSG(I, value) serves as a REPLY only to labels t' -< t, while a REPLY(t) is also a reply for the label t.
The reason for this difference s quite obvious: in this case node can deduce that label, too has already
arrived at the receiver.

If rec-reply [t] = true, the node will forward the reply labeled t on each edge e, provided MSG was re-
ceived on that edge (e E edges-rec-msg [11), and this is the first reply on this edge e 0 edges-sent.reply [t].

Following the receipt of MSG (I',value), with t -< t', and the receipt of all replies to the message, there

is no reference to this label in the given node. At this time, the node generates a new "token" with label

t, to indicate that it and all its outgoing channels are clear of this label. The token contains the name of
the node, the label t aid the list of edges edges.sent-mag [t], on which MSG (1,value) has been sent. This

serves as input to the label protocol.

9

receive TOKEI(node,, edges) on e
send TOKELACK on e;
cleazL nodesui : clan-.nodea[t] U [node};
used-edges[:=- used-edgea[] U {edges}
if V(u -. w) E used-edgos[4], w E clean-nodes[4 then e 1- {t} fi; /* t is dead */

Figure 5: Code of the label protocol at the sender

5 Label protocol

5.1 Properties of the label protocol

The correctness of the main protocol depends on the properties of the label protocol, providing new
unused label values that can be added to the data items transmitted. The main interface between the
main protocol and label protocol is as follows. There exists of a set of labels in the range L, and a relation
-< among them. There is a predicate function freeilabeLavailable(t), indicating that the labeling function
£ (f) can be executed correctly, returning a new label value to be used. The labeling function £ : L* * L
returns a label t E L, and adds this label to 1. The label protocol is allowed to block (by changing the
value of the variable blocked) the progress of the main protocol in any given process, in order to maintain
the property of having a free label available to the sender always. It will suffice that in any system state,
the label protocol will have the following properties1 :

Q1 comparability: In any state S', if a label I exists in a process state S11 or channel state Ct, then I E t
in S..

Q2 ordering- The labels in eare totally ordered by -.<, where if free-labeLavailable(1) holds, for any label
f' E t, it is the case that 1' -< C (1).

Q3 availability: In any state St, free-labeLavailable(D) holds.

Q4 non-blocking: Let Bt be the set of nodes for which in any time t' > t, blocked = true. There is no
time t", such that Bt" forms a cut between the sender and the receiver.

The above properties formalize the idea that: 1. the order -< indicates the order in which labels were
generated, 2. all label values in the system are totally ordered by -<, 3. a free label is always .-'3ilable,
and 4. the nodes that are blocked by the label protocol, never form a cut between the sender aud receiver.

As mentioned earlier, in the label protocol, only the sender is split into a special node and normal
node. All other nodes, including the receiver, axe treated as normal nodes.

5.2 Sender's protocol

The sende"' Aocol is given in Figure 5.
T- p i of this protocol is to determine which labels are no longer in use in the system. For each

label t, tile sew7 - tries to establish the nodes and edges having a variable or message of this label in the
network. Tht .Able used-edges[t] denotes the set of edges traversed by messages MSG (t,value), and
variable :eannodes[t] denotes all the nodes which will not send label t any more.

'The exact definition ot exists as in Q1 is given in Definitions 6.1 and 6.2.

10

As explained in the previous section, a token labeled I and generated by a given node, contains the
set of edges on which MSG (t,value) has been forwarded by this node.

In general, whenever the sender receives TOKEN(node,t,edges) message, it adds node to clean.nodesfl],
and adds edges to usededges(l]. Whenever for each edge (u, w) E used.edges[t], both u and w exist in
clean..nodes[l], the sendcr deduces that label I does not exist in the network and thus deletes it from I.

5.3 Ordinary node's protocol

The ordinary node's protocol is presented in Figure 7.

Procedure NEwTOKEN (node, f, edges)
tokens := tokens+1; Procedure UPDATE (e)
if tokens = n • A then blocked := true fi; send UPDATE (unreported[e]) on e;
token..set := token-set U { (node, e, edges)); wait-updateack [e] := true;
for all e 6 (v, s) do unreported[e] := 0

unroported(e] := unroportod[e] + I od fi; end UPDATE;
end NEwTOKEN;

Figure 6: The procedures

The ordinary nodes coordinate the delivery of tokens to the sender. The variable token.set denotes
the set of tokens which have accumulated at this node, and the variable tokens denotes the cardinality
of this set. A node updates its neighbors about the change in tokens. In order not to have many UPDATE
messages in transit at the same time on a single edge e, the node accumulates the net change between
two UPDATE messages in the local variable unreported[e]. In the proof we will claim that at any time t,
the sum of e.timate,[v], unreportedk[(v, u)], and the value in the UPDATE message in transit from v to
u (if one exists) is equal to tokens,,.

In general, whenever TOKEN(node,t,edges) arrives at a node on edge e, the node adds it to token-set,
sets tokens := tokens + 1, and sends a TOKELACK message back, which acknowledges receipt of TOKEN
message. Also, for all edges e, the node increments unreported[e] by 1. For each adjacent edge e, a node
maintains a boolean variable wait_-tokenack [e] which receives value false after TOKEN message was sent
on e and before TOKEN.ACK is received.

The label protocol has a parameter A = 112n. Each time the cardinality of the token set exceeds a
certain constant n. A, the node sets blocked := true, disabling the operation of the main protocol. This
effectively bounds the number of tokens in a node.

The purpose of the algorithm is to push all the tokens towards the sender. The tokens are carried
by messages TOKEN. When such message is received, TOKEN.ACK message is sent back to acknowledge its
arrival.

The updating on edge e is performed by sending Liessage UPDATE (unreported[e]) on that edge. Re-
ceipt of this message is acknowledged by a special message UPDATL-ACK. For each edge e, node maintains
boolean flag wait.updat..ack [el, which receives value false after sending UPDATE one e and before receiv-
ing UPDATE.ACK from e. The UPDATE (unreported[e]) message is sent on e whenever wait_update.ack [e]
= false and unreportede] 0 0. At this time, unreported[e] := 0 is set. Each node keeps for each edge
u an estimate estimate [u] for the variable tokens on the other end-point of that edge. Whenever node
receives UPDATE (z) message on edge e, it adds z to estimate [u], and sends back UPDATE-ACK.

As it is not clear which path to the sender is operational, the algorithm simply tries to balance the
tokens more or less evenly between the nodes. That is, a node tries to push tokens to its neighbors

11

receive TOKEI(node,t, edges) on e
if -waitupdate.ack (e) A unreported[e] : 0 then call Procedure UPDATE (e) fi
send TOKEN.ACK on e; /* ack the message *1;
call Procedure NEW-TOKEN (node, t, edges)

-'wdit-update-ack(e); unreported[e] $ 0
call Procedure UPDATE (e)

a
tokens - estimate [u] > A; - wait.token.ack (e); (unreportede] = 0) V wait-update.ack;

some.token := select-token (token-set); /*select an arbitrary token*/
send TOKE(sometoken) on e;

wait-..tokenack [e] := true;
tokon-set := token-set - {someatoken);
tokens := tokens - 1;
if tokens < n • A then blocked := false fi;
for all e 6 (v, s) do unreported[e'] unreported[e'] - 1 od;

receive UPDATE (z) on e
estimate[U] := estimate[U]+;
send UPDATL.ACK on e;

D
receive TOKEILACK on e

waittoken.ack :e]= false;

0
receive UPDATEACK on e

waitupdateack [e] := false;

Figure 7: Code of the label protocol

along any any edge u, such tokens - estimate [u] > A, i.e. the amount of tokens on the other side is
estimated to be less than amount of tokens at the node by at least A. However, the actual transmission
is postponed until no TOKEN or TOKEN-ACK message is pending on the link, namely wait..token..ack (e) =
false.

One of subtleties of the protocol, is that upon arrival of a TOKEN a node must send an UPDATE message
if there is one to be sent, before it sends the TOKEN-ACK. This is intended to achieve the same effect as
the update phases in the synchronous version of the algorithm informally described before. Failure to do
so would allow the actual token distribution to differ significantly from the one known to the processors,
and would would result in an exponential increase in complexity.

6 Correctness of the Main Protocol

In this section, it is proven that under the assumption that the label protocol is correct, that is, has
properties QI-4, the main protocol meets properties P1-2. Then, in Section 7, the proof is completed
by proving that the label protocol meets properties Q1-4. Finally, in Section 8, the complexity of the
complete End-to-End protocol is shown to be polynomial.

Recall again that as a convention we superscript variables by time and subscript them by the node
they belong to, e.g. tokens' is the value of the local variable tokens of node v at time t (i.e. at S').

12

Definition 6.1 If in a processor state S,,, there is an entry for label t in one of the variables edges.rec.msg,
edges-sent-msg, edges-aent-reply, edges-r ec -reply, rec-reply, or rec..msg, or latestit = f, then I
is said to exist in node v in state St,.

Definition 6.2 If in a channel state C.1, a message NSG(e, value) or REPLY(t) is in transit, then t is said to
exist in the channel e in state St .

Lemma 6.3 Let to be a time at which the sender added I to t, and tj the earliest time after to at which the
sender deleted I from 1. On each edge e = (u, v), the message MSG(t, value) was sent at most once between
time to and t1 .

Proof: Assume by way of contradiction that it was sent twice at times t 3 and t4 , where t3 < t4.
The processor u sending at time t3 the MSG(I, value) on edge e, had latest. = 1, and added e to
edges -sent msg[l]. In order to have sent the message at time t4 , u must not have e in edgessent-msg[]
in Si 4. The edge e could have been deleted from edges.sent.msg[t] only by this variable being set to 0.
Together with the setting of edgesusent.msg[l] to 0, rec.g[l] must have been set to false. By the code,
the setting could have been done only after latest-i was set to a label 1', 1 -< 1'. By Q1-2, at time to, I
was greater than all labels in St, and since I remains in 1 till time tj, any new label I' added at time t,
to < t < tj, is greater than any of the labels in St .

We claim that latest- could not have been less than t during [t3 , t4J. Indeed, consider the first
time i6, t 3 f " _ t4 latest- = -I I; moreover assume that 1 has been the previous value of latestl.
Clearly, t -t 1. Assume labels t, I were generated at the sender at times i, and i, respectively. It must
be that i [to, t1j, since in this interval, t E 1, and it would be the case that t -< I, a contradiction.
Consequently, i < to and 1 E Sto.

Since at time t3 , latestJ = 1, and by the fact that i is the first time since t3 that latestl -< 1,
it follows that i -< L. Therefore, i E [to, t1J. Since £ E S10, and could not be generated in [to, tj], by
definition, £ E St, and therefore it is in 1 at time i (by Qi). By Q2, at time t, >- I', for all I' E !. In
particular £>- 1, since i E I at time t.

Thus, rec.msg[l] could not have been set to true once again before time t4, a contradiction to the fact
that processor u sent MSG(I, value) on e at time t4. 0

Theorem 6.4 If the labeling protocol has properties Q1-2, then the main protocol has property P1.

Proof: Assume by way of contradiction that the above does not hold. By the senders protocol, the
values in I are input one after the other, the order of input time corresponding to the order in I. One of
the following cases must thus be true:

1. There are values Dk and Dk+1, input respectively at times t1 and t 2 , t1 < t2, and there is no output
of Dk at a time t3 , t3 < t4 , where t4 is the output time of Dk+1.

2. There is a value Dk input at time tj and output at two different times t2 and t 3.

Case 1: By the protocol, with each value Dk, a label t is associated by the sender. In all processors, the
data item sent in a message is latest.-value, and is associated with latest;-, both always updated in
the same event, so it is never the case that the label I associated in a MSG(I. Dk) with a value Dk, is ever
changed. Let us thus denote the label assigned by the sender to Dk by 1k. By the senders protocol, a
MSG(tk, Dk) must have been sent by the sender and REPLY(tk) received prior to the input of Dk+1, that is,
between tj and t2. By property QI, immediately before the input of Dk was performed, 4k did not exist
in St. Thus, in order for a REPLY(Ik) to have been received by the sender, it must be that the receiver

13

performed an output event at some time t 3 < t2. Since t 2 < t 4 by definition, a contradiction to the first

caze is derived.
Case 2: There is only one edge e = (u, r) leading to the receiver processor, on which a MSG(lk, Dk) could
have been received. By the protocol, a value Dk is ,alwayL &,sociated with one label 4A, and as long as
Dk is in St, this label is in I. Thus, by Lemma 6.3 the receiver could have received a MSG(tk,Dk) only
once on e, and output the value Dk only once. n
The following is the proof of the liveness property P2 of the main protocol.

Claim 6.5 There exists in the communication graph G = (V,E), a path p = S,vl,.., vk,r of nodes, each
edge of which is eventually connected and each node of which is eventually -'blocked.

Proof: Define the following graph G'. The set of nodes includes those of processors v, for which given
any time t, there is a time t' > t, such that in state St' the value of blocked, is false. The set of edges
includes the eventually connected edges among nodes. By Q4, there is no cut between the receiver and
sender in G'. It is known, from graph theory, that if is there is no cut between two nodes, then there is
a path connecting them. 13

Lemma 6.6 If MSG(t, value) is sent on edge (vi, vj+l) in p, (as in Claim 6.5) then eventually a REPLY(t) must
be received on (vi+,vi).

Proof: Assume by way of contradiction that there is an edge for which the lemma does not hold. Consider
the edge (vi, vi+l) closest to the receiver for which it does not hold. Consider the last unreplied message
MSG(e, value) sent on (vi, vi+ 1). Since the edge (vi, vi+) is eventually connected, there exists a time tj
such that SG(e, value) is received at node v,+,. If at state St+1 , I -< latest.tv, then, by the code of
the main protocol, a message REPLY(f) is sent from vi+l to vi, and eventually will be received. Therefore,
at state S 1 , 1atestI,,+1 "< i and rec.-rply[t] is false.

Since the Lemma holds for edge (vi+I,vi+ 2), there is a time t2 such that at state Sv2+ 1 the value of
state(vi+l, vi+2) is clean.

If rec-reply[f] is true in St a REPLY(l) is sent to vi and we are done. Therefore, the interesting

case is when rec-reply[f] is false in S 1 . In this case vi+ 1 sends MSG(l, value) on (vi+l, vi+2). Since
the Lemma holds for (v+1, v+ 2), there exists a time t 3 such that a REPLY(£) is received from Vi+2, and
in stateS3, rec..reply[f] is thus true. Therefore, at some time between t2 and t3 , a REPLY(t) was sentnstt vi+21

to vi.
Since the edge (vi+ 1 ,v,) is eventually connected, the REPLY(f) is received at vi, contradicting the

assumption. 0

Corollary 6.7 If in some state St,, the status[(vi, vj+1)] = dirty then there exists a state Se, t < t', in
which status(vj,vi.4)] = clean. 0

Theorem 6.8 If the labeling protocol has properties Q1-4, then the main pre -jl has property P2.

Proof: Consider the sender, in a state S, in which trying is true. By Corollary 6.7, there is a time ti > t,
such that in S,", statu-[(s, vi)] = clean. By the code of the protocol, the sender sends MSG(I, value) to
vi. By Lemma 6.6, there is a time t 2 > ti, such that a REPLY(f) is received. 0

7 Correctness of the Label Protocol

The following is the proof that the label protocol meets properties QJ-4.

14

Theorem 7.1 The labeling protocol has property Q2.

Proof: Follows directly from the properties of the sequential time stamp system of size N = 1 + (A + 5)n 2,
where the predicate function free-labeLavailable (-) is just II < N. 0

Definition 7.2 A token interval is the interval [to, tj from the time to in which the TOKEN was sent, till the
time tl in which a TOKENACK was received for it.

Claim 7.3 In any channel e = (u, v) from, the the token intervals of TOKENs sent in a given direction, are
disjoint.

Proof: Follows from the code, since a REPLY must be received for the latest sent TOKEN, before the
following TOKEN can be sent. 13

Definition 7.4 Let UPDATE(x) be a message that is sent from v to u before time t, and not received until
time t. (There is at most one such message UPDATE at any time t.) Define the "dummy variable" UPDATEt u]
to have the value x, if such a message UPDATE(x) exists, otherwise UPDATE'[u] = 0 (this dummy variable will
also be used in the complexity proof).

The following will lead to the proof that property Q3 is met.

Lemma 7.5 In any state St, if in S tokens= zl and unreporte4[e] = z2, and in Su estimate= y, and
xi + x2 6 y, then in C',, there is an UPDATE (x1 - x2 - y) message from v to u.

proof: Proof is by induction on the sequence of all events by v and u. Initially zl = x2 = y = 0. Assume
the claim holds in state Sti, and let it be proven for any following state St2.If the event between t, and
t 2 was an increment or decrement of tokens, there was also a corresponding increment or decrement of
unreportedv,[e], and the claim holds. If the event is a send event of an UPDATE (x) message, there is a
corresponding assignment of unreported [e] to 0. If the event is a receive event of an UPDATE (x) message
by u, there is a corresponding adding of x to estimate (v). In all other events there is no change of any
of the related variables, and so the claim holds. 0

Lemma 7.6 In any state St, tokens is at most An + 3n.

Proof: Assume by way of contradiction that the claim does not hold. Consider the earliest time t in
which a process v in state S!, had tokens > An + 3n. Let t' be the latest time before t, in which v in S"'
had tokens = An and following which tokens > An in any S,", t" E [e, t]. (Ie. the maximal interval

that ends in t in which blocked= true in v.)
Since 3n more tokens were added to tokens during [t',t], and no ne.token was generated by v,

because it was in state blocked, there exists a process u, from which v received at least 3 tokens on

channel e = (u, v) during [t', t). Recall that by Claim 7.3, the token intervals of these three TOKENs, are
disjoint.

The main argument of the proof is that in the state before u sent the third TOKEN to v during [t', t],

estimate.[v] was at least An. Since u sent the third TOKEN, tokensu was at least An + A. Noting that

A > 3n, a contradiction to the fact that v was the first node to have An + 3n tokens is reached. The

rest of the proof will show that in fact at the time the third TOKEN was sent, estimate[v] AT,.

By Lemma 7.5, at time t', tokens, = unreported,[e] + etimate,[v] + UPDATE(e). Since the number

of tokens in v, during the time interval [t', t], is at least An, the value of unreported,,[e], till the next
to

send event of an UPDATE message, is always at least unreported [e], and this number has to be positive.

15

Consider the first time after t', where unreported[e] = 0. This time occurs before v receives the
second TOKEN from u. At time t', if unreported,[e] > 0, then v must be waiting for an UPDATE-ACK.
Node u will send the UPDATEJACK before it sends the second token (since it receives the UPDATE before
the tokenack). Therefore, v will send an UPDATE before the second TOKEN is received. Just after the
send of the UPDATE, the value of unreportedv[e] = 0. Thus, estimateu[v] + UPDATE(e) >_ An. The
UPDATE must be received at node u before the receipt of TOKEN-ACK for the second TOKEN. This implies
that estimate,,(v] at this time is at least An. It is clear that estimateu[v] will remain larger than An
at least till time t, implying that at the time TOKEN was sent, estiimateu[v] > An. This contradicts the
assumption that such a time t exists. 0

Lemma 7.7 In any state St of the network, the sum of the number of tokens in each node (i.e. &, tokens'),
plus the tokens in all the channels, is at most (A + 3)n2.

Proof: By Lemma 7.6 the number of tokens in a node in the tokens protocol is bounded by (A + 3)n.
We claim that the number of tokens in a node plus the number of tokens on the incoming edges to a
node in bounded by (A + 3)n. This follows from the observation that the adversary, by delivering all the
tokens on the incoming edges to a node, can make the number of tokens in a node equal to the number
of tokens it had plus the number of tokens on the edges. Therefore the overall number in all the node is
(A + 3)n 2. 0

Lemma 7.8 In any state S' , the number of entries for different values of t in the variables edges -sent msg[t],
edges -rec.reply[], edgesrecmsg[t], edges.sent..reply[t], or latest.t = t, is bounded by 2n.

Proof: In any process, for any label 1, if one of the sets or variables corresponding to t is not empty, there
is an edge e in edge.sent.msg[l] which is not in edges.xec.reply[t], or an edge in edges.recmsg[l]
which is not in edgessent.zeply[l]. Since in this case, a new message cannot be received on the edges
on which replies were not sent, and new messages cannot be sent on edges on which replies have not
yet been received, there is one edge at least corresponding to each non-empty entry, and the edges are
different. The number of different possible entries is thus bounded by 2(n - 1), twice the number of
incident edges, which in addition to the one additional value in latest.l is less than 2n. 03

Theorem 7.9 The labeling protocol has property Q3.

Proof: It will suffice to prove that in any state S,, the size of I is at most (A + 5)n 2 . By Lemma 7.7 the
number of token in the node, is at most (A + 3)n 2 . By Lemma 7.8, each node has at most 2n different
tE . Therefore, the size of f is bounded by (A + 5)n 2 . 0

Theorem 7.10 The labeling protocol has property Q1. 01

Proof: Let it be shown that in a state St, if t exists in some process or channel, then in St, t E 1
Initially the claim holds. Assume inductively that the claim holds in any state prior to S t . Since by the
code, no process apart from the sender ever adds a variable entry or message of a non-ezisting label t
without priorly receiving a message containing t, it will suffice to prove that the claim will hold in state
S t', t < t1 iollowing an event in which the sender deleted I from I.

Since in the state St2, where t2 is the latest time in which t was not in I (there is such a last time
since initially I is empty), t was not by the induction hypothesis in any entry in a process or message on
a channel in S2.

Thus, by the main algorithm, any process v having value t in the time interval [t2 ,tl], must have re-
ceived a MSG (t, value) from some process u in a state following S t2. The edges field in any TOKEN (u, t, edges)

16

created in a process u, contains all edges to processes to which it sent MSG (t, value). It follows that the
condition V(u -+ w) E used-edges[l], w E clean..nodes[t holds at time t1 , only after a token has been
received from every node that received a MSG (t, value) a some time in the interval [t2 , tll.

Since a TOKEN (u, t, edges) can be created in u only after all messages sent by it have been replied, all
its outgoing channels do not contain messages with label t. Recall that the creation event of the token
removes all entries of t. By Lemma 6.3 the message MSG (t, value) is sent on each edge at most once in
the time interval [t2 , t 1 i, therefore each node v generates TOKEN(., .) at most once in the time interval
[t2 , t1J. If V (u, w) E usededges[i], U, w E clean-nodes[l] holds at time t1 , then I does not exists is any
process or channel. Therefore, the sender can delete I from I. 0

The proof of the following Theorem 7.11 depends on the proof that the message complexity of the
tokens protocol is bounded.

Theorem 7.11 The laleling protocol has property Q4.

Proof: Assume by way of contradiction that there is such a time to, in which the set of nodes for which
blocked is true in every state St, t > to, forms a cut between the receiver and sender. By the code of
the main protocol, the nodes with blocked = true do not send MSG and TOKEN-ACK messages. In any
state, either trying= true, or since by Q3 freelabeLavailable(t) holds, trying will become true. Since
the nodes with blocked = true form a cut between the receiver to the sender, from the first time in
which trying becomes true after to, it will remain true forever, and eventually the sender will not send
any new MSG messages.

Assume that no new-token,, is generated by any node v. By Theorem 8.21 the message complexity
is bounded as a function of n, therefore eventually there exists a time in which no more TOKENs are sent.
Let this time be tl.

In any state of the sender, tokens. = 0 always. Any neighbor v of s, has estimate,[s] = 0. By the
assumption, after time tl, node v does not send any more tokens. jFrom the code of the label protocol,
this implies that either tokens,, - estimatej,[s] _ A or wait-token.ack(v, s) is true. Since the edge
(v, s) is eventually connected, eventually a tokenack will be returned to v, and waittokenack(v, s)
will become false. Therefore, tokens,, - estimate,[s] < A. Since estimate[s] = 0, tokens, < A.

By induction on the distance from the sender (in the eventually connected network), the above
observation can be extended to show that a node that has an eventually connected path of length i to
the sender, has tokens < iA, after time tj. Any node that that is not in the cut, and has an eventually
connected path to the sender, that does not pass through the cut, has a path of distance at most n - 2
(since the receiver is not in the cut).

The nodes that have an eventually connected edge to a node that is in the cut, by the previous claim
have tokens < (n - 2)A. Therefore, either new tokens are generated, or one of the nodes in the cut is in
a state in which -,blocked.

To complete the proof, it is sufficient to show that the number of times a token can be generated
locally, while no token is received by the sender, is bounded by n3 . This will imply that one of the nodes
in the cut changes its state from blocked to -blocked, contradicting the assumption about the nodes
in the cut. The following paragraph is devoted to shows that the number of tokens generated, while no
token is received by the sender, is bounded by n3 .

The number of tokens that can be created by a single MSG of label t is at most n (one per process).
Since the sender is in a trying state, it will not add any MSG with new label values in any state following
time to. Since the number of MSG messages in the channels in state Sto is at most n2 , the number of new
tokens added is bounded by n3 . 0

17

8 The Complexity

The proof that the space, time and computation time of the protocol are polynomial follow immediately
from the code of protocol, given that the communication complexity is polynomial. In this section we
therefore prove that the communication complexity of the end-to-end protocol is polynomial.

To assist in the analysis, let the following two functions be introduced. The first is an energy function,
E, and the second is a potential function 0. It will be shown that each TOKEN message received, reduces
the sum of E + 28¢ by n, and that the sum E + 28-0 is monotonically non-increasing in time, as long as
no new token is generated, and no TOKEN is received by the sender. Since the sum is bounded from above
and below by a polynomial in n, the number of TOKENs sent is polynomial. The number of UPDATEs is
bounded by 2n times the number of TOKENs sent. Since by the argument used in the proof of Theorem
7.11, the number of times a new token can be generated is at most n3 , the entire scheme has a polynomial
message complexity.

Definition 8.1 For a node v at time t, let intransit, be all the TOKEN messages sent by v before time t,
and not receive by time t. Let jt = tokenst + intransitt.

Definition 8.2

= ((t,)2) + 28(E Iunreportedt[u] + IUPDATE[u]I)
vEV (u,v)EE

Claim 8.3

0 < C1 < 30(A + 3 + n)2 n3 = O(nA2n 3)

Proof: The proof follows from thp fact that each expression is non-negative, and by Lemma 7.6, is
bounded from above by (L% + 3 + n)n. 0

Definition 8.4 An unreported interval in a nodc v is a maximal time interval [to, t1], where to is the latest
time prior to tj, in which unreported[e] # 0.

Definition 8.5 An update interval of an UPDATE message sent from u to v at time t1 and received at time
t 2 , is the time interval [to,t 2], where [to, tj] is an unreported interval.

Claim 8.6 On a channel from u to v, an update intervai intersects at most seven (7) token intervals.

Proof: In the subinterval [to, t1l of the update interval from u to v, unreportedu[e] $ 0. If during this
interval., wait-update.oack, = false, then a TOKEN could not have been sent by u. If wait -update -ack, =
true, then an UPDATE message must be in transit from u to v, or an UPDATE.ACK message is in transit from
v to u. Since the receive event of the UPDATE message, includes a sending of the UPDATE.ACK, a TOKEN
sent by u in the interval [to,ti], would have its corresponding TOKEN..ACK received by u in the interval
[tl, t2]. A TOKEN sent following this one (i.e. in [tl, t 2]), must by Claim 7.3 be sent after the TOKEN.ACK of
the first was received, and would have its TOKEN..ACK received later than t 2 . Since before the TOKEN sent
by u during [to, tL], at most one TOKEN could have been sent and received prior to to, at most three token
intervals overlapped [t0 , t 2] for TOKENs sent from u to v.

In the subinterval [to, t1l of the update intervalfrom u to v, unreported,[e] $ 0. If during this interval,
wait-update-acku = false, then a TOKEN..ACK could not have been sent by u. If wait .update-acku = true,
then an UPDATE message must be in transit from u to v, or an UPDATEACK message is in transit from
v to u. Let a be the first TOKEN message sent from v to u at time t3 > to. Let t 4 be the time that

18

the TOKEN.ACK for a was received at v. If at time to there was an UPDATE in transit between u and
v, it must have been received at v by time t 5 < t4 . Since the receive event of the UPDATE message,
includes a sending of the UPDATE.ACK, a message UPDATACK must have been sent to u before t4 . Let
,3 be the first TOKEN message sent from v to u at time ts > t4 and t6 the time at which it was received
at v. Since the UPDATEACK was sent before ts, it will be received at u at time t7 < t6 . At time t7 ,

waitupdateoack= false. Therefore, at time t6 , when 3 is received at u, either an UPDATE message was
sent between t6 and t7 , or waitupdate-ack= false. In the latter case an UPDATE message is sent to v at
time t6 . If t8 is the time at which the TOKEN.ACK for 3 was received at v, then the UPDATE was received
before t8 . Since the receive event of the UPDATE message, includes a sending of the UPDATEACK, a message
UPDATE..ACK will be sent to u before t 8 . Finally, a token -y sent after t8 will be received by u after the
UPDATEACK. Since before the TOKEN a, at most one additional TOKEN could have been sent and received
prior to to, at most four token intervals overlapped [to, t 2] for TOKENs sent from v to u. Thus, at most
seven token intervals could have intersected [to, t 2] in both directions combined. C

By the same arguments, the following claim is also true.

Claim 8.7 On a channel from u to v, an unreported interval intersects at most seven (7) token intervals.

We define a potential function p. The main purpose of this potential function is to enable to amortize
in a given state, over events that will happen in the future.

Definition 8.8 For every TOKEN message a, define an potential function p(a), and let it change in the
following way:

1. At the time when a is sent, t, pt (a) is decremented by n.

2. For an update interval that intersects the token interval of a, at the time t that the message UPDATE(z)
was received, p(a) is incremented to max{p(a) + IxI/7,2An}.

3. At time t in an unreported interval (either in u or v) that intersects the token interval of a, such that
at time t, either at u or v a token was sent or received and tunreported[el was reduced by one, pt(a)
is incremented to max{p(a) + 1/7,2An}.

4. Let t be the time that a is received, and t' the time just before t. Then pt(a) is set to pt' - 1/14(A -

-(p - /4)) + n.

Claim 8.9 Ipt(a)l O(An) C

The following two lemmi provide a lower bound on the increase in p with respect to UPDATE messages
and changes in unreported.

Lemma 8.10 Let a be a TOKEN message sent from v to u. Consider an unreported interval [to, ti] in v (u
resp.), that is not a part of an update interval and intersects the token interval of a. Let K be the maximum
value of lunreporte[el (Iunreported,[e]l resp.) in this interval. Then the sum of the increases of p(a) in
this interval is at least K/7.

Proof: Consider the time t' such that Iunreportedv[e]l = K. At time t1 , by definition unreported,[el =
0. Between t' and t, at least K times there was a decrease in lunreported,[el. Each such decrease by
definition contributes 1/7. 0

19

Lemma 8.11 Let a be a TOKEN message sent from v to u. Consider an update interval [to, t 2] in v (resp. u)
that intersects the token interval of a. Let tj be the time at which UPDATE was sent. Let K be the maximum
value of lunreported[ell (Iunreportd(e]l resp.) in [to, t 1]. Then the sum of the increases of p(a) in this
interval is at least K/7.

Proof: Consider the time t' such that Iunreported,[e] - K. At time tl the value of unreportedv[e]
was z. Between t' and tj at least IKI - IxI times there was a decrease in Iunreported,[e]l. Each such
decrease by definition contributes 1/7. At time t1 the message UPDATE(x) was sent. At time t 3 , when the
message was received at u, p(a) increased by IzI/7. Thus, the sum of the increases is K/7. 0

The following lemma provides a lower bound on the total increase in p as a function of the final
difference between the number of tokens in the two end processors.

Lemma 8.12 Let to be the time that TOKEN a was sent from v to u, and t1 the time it was received. The
sum of all increases of p(a) (over all time) is at least [A - (/pt, - ,4) - n]/14.

Proof:
Let x1 be the value of the UPDATE that crosses a from u to v and X2 be the value of the UPDATE that

crosses a from v to u.
Let 77 be estimate,,(u), and r0 the value of tokens"), and vo the value of unreportodt[e]. By the

code, To - i/> A.
Let T-1 the value of tokens", v1 the value of unreportedtl[e], and 1 the value of intransitt . This

means that pt = r + 41. By Lemma 7.5, the value of r, (i.e. tokens t) is equal to ro + X 2 + (VI - v0).
Let r 2 the value of tokens", v2 the value of unreported" [e], and t2 the value of intransitt . This

means that pt ' 2 + 42. The value -2 (i.e. tokens t) is equal to 97 + z 1 + V2.

A' Au4 =[(TO + X2 + V - VO) + 1-[(+ XI + V2) + 21

Which we can rewrite as,

(o - 17) - (4' - pu') = [(XI + V2) + 42] - [(X2 + VI - Vo) + 4i

Since 62< n- 1and t4 >0,12-61 < n,

(o - n) - (ptl - u") - n< IOIo + 1X21 + Ii I + IzXl + 1V21

Recall that A < ro - 7, hence,

2(A- (pt' - p) n) < max{IvoI,X21} + IVI[+ IlXII + I L21

Since every term in the sum is identified with a distinct update or unreported interval. By Lemma
8.11 and Lemma 8.10, each term contributes to p(a) one seventh of the maximum value. This implies
that the lemma follows. 0

Definition 8.13 Let T, be the set of tokens, a, sent on edge e, such that either t is in the token interval of
a, or at time t, there is an update or an unreported interval that intersect the token interval of a. Denote by
T t = UeEET t . Let,

t= t p(a)

Claim 8.14 t O(An 3)

20

Proof: By Claim 8.9, Ipt(a)l = O(nA), and by Claim 8.6, the size of Tt is bounded by 7n'. [

Lemma 8.15 Let a be a TOKEN message for which the token interval ends before time t, and a 0 T, then
for any t' > t, p t (a) = pt'(a).

Proof: Since a was already received at time t, p(a) can not decrease after time t. The fact that it can
not increase after time t is immediate from the definition of the increases. C

The following lemma shows that the value of each p(a) becomes eventually non-negative, and therefore
dropping them from the sum in 4) can not increase the value of 4.

Lemma 8.16 Let a be a TOKEN message for which the token interval ends before time t, and a 0 T, then
pt (a) > 0.

Proof: By Lemma 8.15 after time t, p(a) does not change. The function p(a) can be decreased at most
twice. When a is sent, p(a) is decreased by 1/28n. The value of p(a) is decreased at the receipt by
1/14(A - n - (p' -/4)) - n. By Lemma 8.12, the sum of the increases is at least [A - (4l- _/4l - n]/14.
Therefore, p(a) > 0. 0l

The following lemma shows that the sum C + 2801 decreases by at least n, after each receive of a
TOKEN message. This implies that the number of such messages can be bounded by [C + 280't]/n.

Lemma 8.17 Let a be a TOKEN message receive from v to u at time t. Let t', t < t' be the time immediately
after the receive event of a. Then

(V + 28 0t) - (Ct' + 280") >_ n

Proof: At the receipt of a, pt is decremented by one, and / is incremented by one. This implies that
(pt)2 + (A')2 is changed to (/ - 1)2 + (/4i + 1)2, hence the difference is 2y' - 2At - 2. Since the increases

in unreported is bounded by n, t- > 2/ - 2/4 - 2 - 28n.
The value of .t is changed to 0' - 1/14(A - n - (it - p')) + n. Therefore 280 t - 280 t ' = 2A - 2n -

2(14 - t4) - 28n. Hence, the sum of the two is (Ct + 2 8 0)t) - (Ct' + 289') 2! 2A - 58n - 2 > n. For
A > 30n, this holds. 0l

The following lemma establishes the invariant that Ct + 284) is monotonically non increasing in time.
This fact, combined with Lemma 8.17, will establish the polynomial convergence of the algorithm.

Lemma 8.18 Let St° and St, be two states, such that to < ti, then CIO + 28) tO C>V + 284".-

Proof: The only events that can affect the value of C + 280), are the sending of a TOKEN message, the
receipt of a TOKEN message, the sending of an UPDATE message, or the receipt of an UPDATE message.

When a receive token event occurs, by Lemma 8.17, the sum C + 284) is decremented by n.
When a TOKEN message, a, is sent from v, the value of is,, does not change. The unreported variables

that are updated, contribute at most 28n to C. Since p(a) is decremented by n, 0 is decremented by n,
and therefore the sum C + 280 can only decrease in this case.

When an UPDATEIz) message is sent, the value of C does not change. The increase in IUPDATEI is equal
to the decrease in lunreportedi. The value of 4) clearly remains unchanged.

When an UPDATE(z) message is received, the value of C is decremented by 281x. By Lemma 8.6,
an update interval can intersect at most seven token intervals. Each of them will increase 40 by JxI/7.
Therefore the increase in 4 is bounded by I[. 0

Lemma 8.19 As long as no new token is generated locally and no TOKEN is received at the sender, the
number of TOKEN messages sent in the labeling protocol, is bounded by O(A 2n2), and the number of UPDATE
messages is bounded by O(An 3).

21

Proof: At any time lCV + 280"1l = O(A2n3), by Claims 8.3 and 8.14. By Lemma 8.18 and 8.17, the
maximum number number of tokens transiritted is bounded by O(An 2). The number of UPDATE messages
is bounded by O(A2n 3). 0

In order to show that the algorithm is polynomial it would have been sufficient to multiply the above
complexity by n , the number of tokens that can be generated, without any TOKEN returned to the
sender. In the rest of the complexity analysis we show how to analyze the influence of the tokens that are
generated, without a great penalty in the message complexity. The main idea is to analyze the influence
of creating a TOKEN on the energy function.

Lemma 8.20 If k new TOKENs are generated and no TOKEN is received at the sender, the number of TOKEN
messages sent in the labeling protocol, is bounded by O(A 2 n3 + kA'n), and the number of UPDATE messages
is bounded by O(A 2 n3 + kA 2 n2).

Proof: Each token that is generated increases E + 280 by at most A 2n2 . The total increase is bounded
by kA'n 2 . Therefore, the number of tokens is bounded by O(A2n 2 + kA 2n), and the UPDATE messages
by 0(A 2n 3 + kAz2 n 2). 0

Theorem 8.21 The communication complexity of the end-to-end protocol is O(n 9) bits.

Proof: The complexity of the main protocol is O(n4) bits per data item transmitted. Since the number
of TOKENs generated locally by the labeling algorithm is bounded by O(n 3), and since each time stamp
label I is of O(n 3) bits, and each Update message is of O(log n) bits, the communication complexity of
the protocol is by Lemma 8.20 O(n 9) bits. 0

9 Acknowledgements

We wish to thank Yehuda Afek and Adi Rosen for their helpful comments, (specially in pointing out an
error in an earlier version of the complexity counting arguments.

References

[AAG87] Yehuda Afek, Baruch Awerbuch, and Eli Gafni. Applying static network protocols to dynamic

networks. In 28th Annual Symposium on Foundations of Computer Science, IEEE, October
1987.

[AAM89] Yehuda Afek, Baruch Awerbuch, and Hezi Moriel. Overhead of resetting a communication
protocol is independent of the size of the network. May 1989. Unpublished manuscript.

[AE83] Baruch Awerbuch and Shimon Even. A Formal Approach to a Communication-Network Proto-
--1; Broadcast as a Case Study. Technical Report TR-459, Electrical Engineering Department,

Technion-I.I.T., Haifa, December 1983.

[AE86] Baruch Awerbuch and Shimon Even. Reliable broadcast protocols in unreliable networks.
Networks, 16(4):381-396, Winter 1986. Previously titled "A Rigorous Treatment of a Commu-
nication Protocol: Broadcast as a Case Study.".

gAG88] Yehuda Afek and Eli Gafni. End-to-end communication in unreliable networks. In Proceedings
of the 7th Annual ACM Symposium on Principles of Distributed Computing, Toronto, Ontario,
Canada, pages 131-148, ACM SIGACT and SIGOPS, ACM, 1988.

22

[AGH89] Baruch Awerbuch, Oded Goldreich, and Amir Herzberg. A quantitative approach to dynamic
networks. May 1989. Unpublished manuscript.

[AM88] Baruch Awerbuch and Yishay Mansour. Efficient topology update algorithms. 1988. Unpub-
lished manuscript.

[AMS89] Baruch Awerbuch, Yishay Mansour, and Nir Shavit. Polynomial end-to-end communication.
In 30 th Annual Symposium on Foundations of Computer Science, Comp. Soc. of the IEFE,
IEEE, 1989.

[A087] Ravindra K. Ahuja and James B. Orlin. A Fast and Simple Algorithm for the Maximum Flow
Problem. Working Paper 1905-87, MIT Sloan School of Management, June 1987.

[AS88] Baruch Awerbuch and Michael Sipser. Dynamic networks are as iast as static networks. In
29 th Annual Symposium on Foundations of Computer Science, pages 206-220. IEEE, October
1988.

[BS88] Baratz and Segall. Reliable link initiali7ation procedures. IEEE Trans. Comm., February 1988.

[DF88) Edsger W. Dijkstra and W. H. J. Feijen. A Method of Programming. Addison-Wesley, 1988.

[DS87] D. Dolev and N. Shavit. A note on bounded time-stamp systems. July 1987. Unpublished
manuscript.

[DS89] D. Dolev and N. Shavit. Bounded concurrent time-stamp systems are constructible. In Pro-
ceedings of the 21"t Annual ACM Symposium on Theory of Computing, Seattle, Washington,
ACM SIGACT, ACM, 1989.

[Fin79] Steven G. Finn. Resynch procedures and a fail-safe network protocol. IEEE Trans. Comm.,
COM-27(6):840-845, June 1979.

[Gal76] Robert G. Gallager. A Shortest path Routing Algorithm with Automatic Resynch. Technical
Report , MIT Lab. for Information and Decision Systems, March 1976.

[GT881 Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum flow problem.
J. ACM, 35(4):921-940, October 1988. Also appeared in 18th STOC (1986).

[IL87] A. Israeli and M. Li. Bounded time stamps. In 28 'h Annual Symposium on Foundations of
Computer Science, White Plains, New York, pages 371-362, IEEE, 1C87.

(Lam86] Leslie Lamport. The mutual exclusion problem.part ii: statement and solutions. J. ACM,
33(2):327-348, 1986.

[LMF88] Nancy A. Lynch, Yishay Mansour, and Alan Fekete. The data link layer: two impossibil-
ity results. In Proceedings of the 7th Annual ACM Symposium on Principles of Distributed
Computing, Toronto, Ontario, Canada, pages 149-170, A'.M SIGACT and SIGOPS, ACM,
Toronto, Canada, 1988. Also, Technical Memo MIT/LCS/TM-355, May 1988.

[MRR80] John McQuillan, Ira Richer, and Eric Rosen. The new routing algorithm for the arpanet. IEEE
Trans. Comm., 28(5):711-719, May 1980.

[Vis83] U. Vishkin. A distributed orientation algorithm. IEEE Trans. Info. Theory, June 1983.

[Wec80] S. Wecker. DNA: the digital network architecture. IEEE Transactions on Communication,
COM-28:510-526, April 1980.

23

OFFICIAL DISTRIBUTION LIST

Director 2 copies

Information Processing Techniques Office

Defense Advanced Research Projects Agency

1400 Wilsin Boulevard
Arlington, VA 22209

Office of Naval Research 2 copies

800 North Quincy Street
Arlington, VA 22217

Attn: Dr. R. Grafton, Code 433

Director, Code 2627 6 copies

Naval Research Laboratory

Washington, DC 20375

Defense Technical Information Center 12 copies

Cameron Station
Alexandria, VA 22314

National Science Foundation 2 copies

Office of Computing Activities

1800 G. Street, N.W.

Washington, DC 20550

Attn: Program Director

Dr. E.B. Royce, Code 38 1 copy

Head, Research Department

Naval Weapons Center
China Lake, CA 93555

